p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.88C23, C23.679C24, C22.3442- 1+4, C22.4522+ 1+4, C23.97(C4○D4), C23.Q8⋊83C2, (C22×C4).594C23, (C2×C42).106C22, (C23×C4).492C22, C23.7Q8⋊108C2, C23.8Q8⋊133C2, C23.11D4⋊117C2, C23.10D4.61C2, C23.23D4.70C2, (C22×D4).276C22, C24.C22⋊166C2, C2.99(C22.32C24), C23.65C23⋊151C2, C23.63C23⋊180C2, C23.83C23⋊115C2, C2.C42.383C22, C2.38(C22.56C24), C2.116(C22.46C24), C2.115(C22.36C24), C2.108(C22.47C24), (C2×C4).467(C4○D4), (C2×C4⋊C4).489C22, C22.540(C2×C4○D4), (C2×C22⋊C4).76C22, SmallGroup(128,1511)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.679C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=cb=bc, e2=a, g2=ba=ab, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >
Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.7Q8, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.65C23, C23.10D4, C23.Q8, C23.11D4, C23.83C23, C23.679C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.36C24, C22.46C24, C22.47C24, C22.56C24, C23.679C24
(1 16)(2 13)(3 14)(4 15)(5 48)(6 45)(7 46)(8 47)(9 54)(10 55)(11 56)(12 53)(17 33)(18 34)(19 35)(20 36)(21 60)(22 57)(23 58)(24 59)(25 37)(26 38)(27 39)(28 40)(29 43)(30 44)(31 41)(32 42)(49 64)(50 61)(51 62)(52 63)
(1 33)(2 34)(3 35)(4 36)(5 40)(6 37)(7 38)(8 39)(9 31)(10 32)(11 29)(12 30)(13 18)(14 19)(15 20)(16 17)(21 49)(22 50)(23 51)(24 52)(25 45)(26 46)(27 47)(28 48)(41 54)(42 55)(43 56)(44 53)(57 61)(58 62)(59 63)(60 64)
(1 35)(2 36)(3 33)(4 34)(5 38)(6 39)(7 40)(8 37)(9 29)(10 30)(11 31)(12 32)(13 20)(14 17)(15 18)(16 19)(21 51)(22 52)(23 49)(24 50)(25 47)(26 48)(27 45)(28 46)(41 56)(42 53)(43 54)(44 55)(57 63)(58 64)(59 61)(60 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 7 16 46)(2 47 13 8)(3 5 14 48)(4 45 15 6)(9 22 54 57)(10 58 55 23)(11 24 56 59)(12 60 53 21)(17 26 33 38)(18 39 34 27)(19 28 35 40)(20 37 36 25)(29 52 43 63)(30 64 44 49)(31 50 41 61)(32 62 42 51)
(1 47)(2 28)(3 45)(4 26)(5 18)(6 14)(7 20)(8 16)(9 21)(10 50)(11 23)(12 52)(13 40)(15 38)(17 39)(19 37)(22 32)(24 30)(25 35)(27 33)(29 51)(31 49)(34 48)(36 46)(41 64)(42 57)(43 62)(44 59)(53 63)(54 60)(55 61)(56 58)
(1 50 17 57)(2 58 18 51)(3 52 19 59)(4 60 20 49)(5 29 28 56)(6 53 25 30)(7 31 26 54)(8 55 27 32)(9 46 41 38)(10 39 42 47)(11 48 43 40)(12 37 44 45)(13 23 34 62)(14 63 35 24)(15 21 36 64)(16 61 33 22)
G:=sub<Sym(64)| (1,16)(2,13)(3,14)(4,15)(5,48)(6,45)(7,46)(8,47)(9,54)(10,55)(11,56)(12,53)(17,33)(18,34)(19,35)(20,36)(21,60)(22,57)(23,58)(24,59)(25,37)(26,38)(27,39)(28,40)(29,43)(30,44)(31,41)(32,42)(49,64)(50,61)(51,62)(52,63), (1,33)(2,34)(3,35)(4,36)(5,40)(6,37)(7,38)(8,39)(9,31)(10,32)(11,29)(12,30)(13,18)(14,19)(15,20)(16,17)(21,49)(22,50)(23,51)(24,52)(25,45)(26,46)(27,47)(28,48)(41,54)(42,55)(43,56)(44,53)(57,61)(58,62)(59,63)(60,64), (1,35)(2,36)(3,33)(4,34)(5,38)(6,39)(7,40)(8,37)(9,29)(10,30)(11,31)(12,32)(13,20)(14,17)(15,18)(16,19)(21,51)(22,52)(23,49)(24,50)(25,47)(26,48)(27,45)(28,46)(41,56)(42,53)(43,54)(44,55)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,7,16,46)(2,47,13,8)(3,5,14,48)(4,45,15,6)(9,22,54,57)(10,58,55,23)(11,24,56,59)(12,60,53,21)(17,26,33,38)(18,39,34,27)(19,28,35,40)(20,37,36,25)(29,52,43,63)(30,64,44,49)(31,50,41,61)(32,62,42,51), (1,47)(2,28)(3,45)(4,26)(5,18)(6,14)(7,20)(8,16)(9,21)(10,50)(11,23)(12,52)(13,40)(15,38)(17,39)(19,37)(22,32)(24,30)(25,35)(27,33)(29,51)(31,49)(34,48)(36,46)(41,64)(42,57)(43,62)(44,59)(53,63)(54,60)(55,61)(56,58), (1,50,17,57)(2,58,18,51)(3,52,19,59)(4,60,20,49)(5,29,28,56)(6,53,25,30)(7,31,26,54)(8,55,27,32)(9,46,41,38)(10,39,42,47)(11,48,43,40)(12,37,44,45)(13,23,34,62)(14,63,35,24)(15,21,36,64)(16,61,33,22)>;
G:=Group( (1,16)(2,13)(3,14)(4,15)(5,48)(6,45)(7,46)(8,47)(9,54)(10,55)(11,56)(12,53)(17,33)(18,34)(19,35)(20,36)(21,60)(22,57)(23,58)(24,59)(25,37)(26,38)(27,39)(28,40)(29,43)(30,44)(31,41)(32,42)(49,64)(50,61)(51,62)(52,63), (1,33)(2,34)(3,35)(4,36)(5,40)(6,37)(7,38)(8,39)(9,31)(10,32)(11,29)(12,30)(13,18)(14,19)(15,20)(16,17)(21,49)(22,50)(23,51)(24,52)(25,45)(26,46)(27,47)(28,48)(41,54)(42,55)(43,56)(44,53)(57,61)(58,62)(59,63)(60,64), (1,35)(2,36)(3,33)(4,34)(5,38)(6,39)(7,40)(8,37)(9,29)(10,30)(11,31)(12,32)(13,20)(14,17)(15,18)(16,19)(21,51)(22,52)(23,49)(24,50)(25,47)(26,48)(27,45)(28,46)(41,56)(42,53)(43,54)(44,55)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,7,16,46)(2,47,13,8)(3,5,14,48)(4,45,15,6)(9,22,54,57)(10,58,55,23)(11,24,56,59)(12,60,53,21)(17,26,33,38)(18,39,34,27)(19,28,35,40)(20,37,36,25)(29,52,43,63)(30,64,44,49)(31,50,41,61)(32,62,42,51), (1,47)(2,28)(3,45)(4,26)(5,18)(6,14)(7,20)(8,16)(9,21)(10,50)(11,23)(12,52)(13,40)(15,38)(17,39)(19,37)(22,32)(24,30)(25,35)(27,33)(29,51)(31,49)(34,48)(36,46)(41,64)(42,57)(43,62)(44,59)(53,63)(54,60)(55,61)(56,58), (1,50,17,57)(2,58,18,51)(3,52,19,59)(4,60,20,49)(5,29,28,56)(6,53,25,30)(7,31,26,54)(8,55,27,32)(9,46,41,38)(10,39,42,47)(11,48,43,40)(12,37,44,45)(13,23,34,62)(14,63,35,24)(15,21,36,64)(16,61,33,22) );
G=PermutationGroup([[(1,16),(2,13),(3,14),(4,15),(5,48),(6,45),(7,46),(8,47),(9,54),(10,55),(11,56),(12,53),(17,33),(18,34),(19,35),(20,36),(21,60),(22,57),(23,58),(24,59),(25,37),(26,38),(27,39),(28,40),(29,43),(30,44),(31,41),(32,42),(49,64),(50,61),(51,62),(52,63)], [(1,33),(2,34),(3,35),(4,36),(5,40),(6,37),(7,38),(8,39),(9,31),(10,32),(11,29),(12,30),(13,18),(14,19),(15,20),(16,17),(21,49),(22,50),(23,51),(24,52),(25,45),(26,46),(27,47),(28,48),(41,54),(42,55),(43,56),(44,53),(57,61),(58,62),(59,63),(60,64)], [(1,35),(2,36),(3,33),(4,34),(5,38),(6,39),(7,40),(8,37),(9,29),(10,30),(11,31),(12,32),(13,20),(14,17),(15,18),(16,19),(21,51),(22,52),(23,49),(24,50),(25,47),(26,48),(27,45),(28,46),(41,56),(42,53),(43,54),(44,55),(57,63),(58,64),(59,61),(60,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,7,16,46),(2,47,13,8),(3,5,14,48),(4,45,15,6),(9,22,54,57),(10,58,55,23),(11,24,56,59),(12,60,53,21),(17,26,33,38),(18,39,34,27),(19,28,35,40),(20,37,36,25),(29,52,43,63),(30,64,44,49),(31,50,41,61),(32,62,42,51)], [(1,47),(2,28),(3,45),(4,26),(5,18),(6,14),(7,20),(8,16),(9,21),(10,50),(11,23),(12,52),(13,40),(15,38),(17,39),(19,37),(22,32),(24,30),(25,35),(27,33),(29,51),(31,49),(34,48),(36,46),(41,64),(42,57),(43,62),(44,59),(53,63),(54,60),(55,61),(56,58)], [(1,50,17,57),(2,58,18,51),(3,52,19,59),(4,60,20,49),(5,29,28,56),(6,53,25,30),(7,31,26,54),(8,55,27,32),(9,46,41,38),(10,39,42,47),(11,48,43,40),(12,37,44,45),(13,23,34,62),(14,63,35,24),(15,21,36,64),(16,61,33,22)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 4A | ··· | 4P | 4Q | ··· | 4U |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.679C24 | C23.7Q8 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.C22 | C23.65C23 | C23.10D4 | C23.Q8 | C23.11D4 | C23.83C23 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 1 | 2 | 8 | 4 | 3 | 1 |
Matrix representation of C23.679C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3] >;
C23.679C24 in GAP, Magma, Sage, TeX
C_2^3._{679}C_2^4
% in TeX
G:=Group("C2^3.679C2^4");
// GroupNames label
G:=SmallGroup(128,1511);
// by ID
G=gap.SmallGroup(128,1511);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,120,758,723,1571,346,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*b=b*c,e^2=a,g^2=b*a=a*b,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations